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We first consider the performance of the Wu (1973) - Hausman (1978) (W-H) specification error 
test as a test for the existence of ordinary least squares (OLS) bias. We discuss power properties of 
the test under alternative null hypotheses, one of which has not previously been considered. We 
next consider how the W-H test performs as an indicator of the extent (rather than the existence) 
of an OLS bias problem, since this usage of the test seems common in applied studies. Finally 
Monte Carlo methods are used to evaluate Wu’s two-step estimation procedure involving the W-H 
test as a pretest. 

1. Introduction 

In this paper we consider the performance of a specification error test 
proposed by Wu (1973) and by Hausman (1978) for detecting the ordinary 
least squares (OLS) bias problem in a linear simultaneous equations model.’ 
For convenience, we refer to this test as the Wu-Hausman test. The 
Wu-Hausman test is closely related to, though not identical to, a test Durbin 
(1954) presents. 

We first consider the performance of the Wu-Hausman test as a test for 
the existence of an OLS bias problem. We then consider whether the Wu- 

*This research was supported in part by Social Sciences and Humanities Council of Canada 
Research Grant 410-77-0339 and a Leave Fellowship. Earlier versions of this paper were presented 
at the Econometric Society Meetings in New York, December 1982 and at an Econometrics 
Workshop at the University of Chicago in January 1983, as well as at the World Congress of the 
Econometric Society in Aixen-Provence, August 1980. We are particularly grateful to Professors 
T. Amemiya, J.J. Heckman, J. Kmenta, J. Thursby and K.F. Wallis for their comments and 
encouragement at various crucial points in the development of this paper. We also thank 
Professors R. Carter, R.W. Farebrother, T. Kariya, J. Ramsey, N.S. Revankar, H. Tsurumi and 
D.M. Wu as well as anonymous referees and an associate editor for comments on earlier versions 
of the paper. We are, of course, solely responsible for any remaining errors or misinterpretations. 

‘We are referring here to Wu’s T2 and to the alternative formulation of the test by Hausman 
(1978, p. 1259). In this paper we do not discuss other proposed uses of the Wu and Hausman tests. 
See Nakamura and Nakamura (1981) for a proof of the equality of the Wu and Hausman test 
statistics in a linear model of the sort adopted in this paper. 
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Hausman test or test statistic might be used to judge the extent, as opposed to 
the existence, of an OLS bias problem. The test is often used in applied 
settings where there are strong theoretical or other a priori reasons for 
believing an OLS bias problem does exist. When the Wu-Hausman test is 
applied in such situations to determine whether there is a ‘significant’ OLS bias 

problem, perhaps it is really the extent of the bias problem that is at issue. Or 
the practitioner may implicitly be trying to judge the seriousness of various 
consequences of an OLS bias problem. For instance, an OLS bias problem will 
result in a departure of the actual from the stated probability of a Type I error 
for the usual r-test for the coefficient of an included endogenous variable. 
Monte Carlo methods are used to explore the extent to which a two-step 
estimation procedure proposed by Wu (1973) that uses the Wu-Hausman test 
as a pretest, overcomes this testing problem. 

2. Model, test statistic and null hypotheses 

Consider the two-equation linear system given by the structural equations 

and 

Yl = %Y2 + Z,a, + h,u,, (1) 

Y2 = YlYl + z,Y2 + z2Y, + Y4”2 3 

or equivalently by (1) and the reduced form equation 

@a) 

Y, = Z,P, + Z,P, + x,u,+ x92. (2b) 

In these equations y, and y2 are (n x 1) vectors of observations: 2 Z, and Z, 
are (n x K,) and (n X K2) matrices of observations on K, predetermined 
variables that are included in the structural equation for yi and K, prede- 
termined variables that are excluded from this equation; the U’S are (n X 1) 

vectors of random disturbance terms that are each normally distributed with 
mean zero and a variance of one; the (Y’S, y’s and p’s are vectors of unknown 
parameters; and A,, A, and A, are unknown scalar parameters. It is assumed 
that the structural equation for y, is identified: hence we must have K, 2 1. 
No assumption is made, however, concerning the identification of the struc- 
tural equation for Y,.~ 

*In the relevant papers of Wu (1973,1974) and Hausman (1978) ,rz is an 01 X G,) matrix. For 
expositional convenience, in this paper we have set G, = 1 as Durbin (1954) also does in his 
original paper. 

‘In fact, in the papers of Wu (1973,1974) and Hausman (1978) the equation for _~a is a reduced 
form equation in the sense that only predetermined variables appear on the right-hand side, but no 
structural equation for y, is given or asserted to exist nor is it assumed that any underlying 
structural equation for y, is identified. In the spirit of their papers the predetermined variables in 
2, and Z, can be viewed simply as instruments for yz. 
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Suppose we are concerned that the OLS estimator of (Ye in (1) is biased. 
Such a problem might be motivation for testing 

H,*: B=O versus H,*: B#O, (3) 

where B is the asymptotic bias of the OLS estimator of LY, in (1). We can 
rewrite the reduced form disturbance term as X,u, + X,u, = tuz, where U* is a 
standard normal variable and t2 is the variance of the reduced form dis- 
turbance term. Then for our model B is given by 

B=plim(b,-a,)= 
COV(~,~,> &J*) XIECOV(U1. u,) 

pl~m(Wd(L4~2) = var*( Z2&) + t2 

=x t i 5= 
1P ; var*( Z,p,) + [* = 

x 
” l ii i 1 - Rt2-zlP,.zJ. (4) 

where b, is the OLS estimator of (it, A, = I - Z,(Z,‘Z,)- ‘Z;, var*( Z,B,) = 
var(Z,&) - &cov(Z2, Z,)var(Z,)~‘cov(Z,, Zt)&, p = cov(q, or>. and 

R t, - z,p, z, denotes the multiple coefficient of determination from the regres- 
sion of (y2 - Z,j3,) on Z2.4 Or, if concern about an OLS bias problem arises 
from the potential correlation between y, and h,u,. we might test 

Hb: p=O versus H,: p#O, 

where p is given for our model by 

(5) 

p=corr(X,u,,[u,)= , 
cov(+,, bz> 

\ pr(h,~~,)var(tu,) 

= hECOV(% u2> 
@ = COV(U,> 02). (6) 

Following a similar line of reasoning we might also consider testing 

H,: S=O versus H,: 6#0, 

where 

(7) 

s = COV( x,u,, &J,) = X&ov( q, u*) = X,[p. (8) 

4 Notice that RS, _ z,p,. z, will be larger the smaller 6’ is compared with the variability of 

Z,& + Z2& in (2b), and the larger the proportion is of the variability of yz that is explained by 
the variables that are excluded from, as opposed to the variables that are included in, the equation 
of interest for _y,. 
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The null hypothesis that Wu (1973) considers is Ha. Durbin (1954) and 
Hausman (1978) do not explicitly state the null hypothesis being tested. 
Hausman and Taylor (1981, p. 13) propose the null hypothesis H,* stating: ‘It 

appears in practice.. . that H, is frequently tested in situations where we can 
infer from the subsequent actions taken that the hypothesis H,* was 
intended. . _ ’ 

The Wu-Hausman test may be used to test (3), (5) or (7). For our model, the 
statistic for this test may be written as’ 

T2 = c&2*/Q,), (9) 

where ci = (n - K, - 2G,)/G,, Q* = (b, - WKY;&Y~)-~ - 
W4~z)-~l--l@~ -M Q,= Qzt- Q*, Qc,=h -YA)'A,(Y, -YJO 4 
and A, are defined as above, b,= (y;A,y2)2)-1y;A,y, is the instrumental 
variables (IV) method estimator of (ri in (1) and A, = Z(Z’Z)-‘Z’ - 
Z,( Z[Z,)-tZ; where Z = (Z,, Z,). The statistic T2 is not the only statistic that 
could be used to test (3) (5) or (7). Wu (1973,1974) proposes three other 
statistics (T,, T,, T4) which all share the same numerator, Q*. Hausman (1978) 
also proposes an IV form of his test statistic that is identical to a statistic 
presented by Durbin (1954). Depending on the estimator used for the variance 
of X,u,, Durbin’s statistic and the IV form of Hausman’s statistic are identical 
to either Wu’s T3 or T, statistic. The statistics of Revankar and Hartley (1973) 
and Revankar (1978) also share the numerator Q*, and are identical to Wu’s T2 

when the structural equation for yr is just-identified.6 The following discussion 
is in terms of the T, test because Wu (1973,1974) gives theoretical and Monte 
Carlo results indicating that T, is to be preferred to his other statistics. 
Nevertheless, because of the close relationship among these statistics, our 
results hold for the other tests mentioned above as well. 

3. Power properties 

Except for degenerate cases, A:, t2 and (1 - Rt,2_Z,P, =,) must all be 
non-zero for the model given by (1) and (2a), or by (1) and (2b). Thus from (4) 
(6) and (8) we see that the null hypotheses H,*, Hb and H, are all equivalent’ 
in the sense that in any particular case they are all either true or false, 
depending on whether p is zero or non-zero. The same test statistic and 
procedure are used for the Wu-Hausman test of each of these three null 

‘See Kariya and Hodoshima (1980, p. 47, eq. 3.16). 

6See Nakamura and Nakamura (1981, p. 1587) and Kariya and Hodosmma (1980, p, 47). 

‘Holly (1982) argues that in some cases H, and Hz do not imply each other For the model 
used in this paper, which is also the model treated by Durbin (1954) Wu (1973) and Hausman 
(1978), however, Ho, H,* and Hb imply each other except for degenerate cases. See Nakamura and 
Nakamura (1982) for a proof based on a maxrmum likelihood approach 
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hypotheses. For any given set of parameter values for (1) and (2a) or (2b), 
the rejection rate must be the same for the tests of H,*, Hb or H,. However, 
the power function for a test is the relationship between the rejection rate for 
the test of a given null hypothesis and the size of the departure from this 
null hypothesis, so it matters if we describe the power function for the Wu- 
Hausman test in terms of B, S or p. Clearly the graph of the (common) 
rejection rate for the Wu-Hausman tests of H,*, H, or H;, versus, say, B will 
not be the same as the graph of this rejection rate versus p or 6. These 
differences can be explored by considering the determinants of B, 6 and p and 
the distribution of T,. 

We will first consider T,. The probability that the absolute value of T, 
will exceed some critical value is an increasing function of p2, E2 and 
R” y2_z,B, .=,.’ However, this probability does not depend directly on X,. This 
can be established as follows. From Wu (1973, eq. 2.10) we have b, - 6, = 
C(h,u,) where C = (y;A1y2)-1y;A2 - (,~$vz’A,y,)-‘&A,. Also from Wu (1973, 

p. 737) we have Q2 = X’u;(H - C’D-‘C)u,, where H = A, - 
A,y2(y;A,y2)p1y;A, and D = (JJ;A~JJ~)-~ - (yiAly2)-1. Thus we can rewrite 
T, as 

T =c X:u;C’[(~~~2~2)~1-(~~~lL.2)~1]~1Cul 

2 1 
X:u;( H - C’D-‘C)u, ’ 

(10) 

and the parameter X: can be cancelled out of (10) just as hi cancels out of the 
expression for p given in (6). Of course, the distribution of T2 will still depend 
indirectly on h, if the distribution of y, involves Xi. Without conditions on 
the coefficients of the structural equation for y,, however, A, may take on any 
value for any given values of h, and X,. In fact, both the distribution of T2 
and the rejection rate of the Wu-Hausman test are invariant to changes in the 
structural equation for yz that leave the reduced form equation for y2 unal- 
tered. This point can perhaps be clarified with an example. 

We let 2, = (z~,~, z~,~), Z, = (z~,~, z~,~, z~,~), and we set cy,, all the elements 
of a2 in (1) and all the elements of p1 and p2 in (2b) equal to 1. Thus the 
model is 

Yl =y, + z1.1+ z1.2 + XlUl, (11) 
and 

Y2 = zl,l + z1,2 + z2,1 + z2.2 + ‘2,3 + x,“l + h3”2. (12) 

By controlling the values of Xl, X2 and X3 we can determine the values of p2 
and B, and the population value of R:,, .*,,,, I ,,*,= z ,,,z2,z,I >,Penoted hereafter 
simply by R2. Because the coefficients of the reduced form equation for y2 are 

‘See Nakamura and Nakamura (1984a) for a proof. 
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fixed in (12), by determining the value of R2 we also determine the value of 

Rt ~ Z*& z,. For this model we see that p2 = X,/(X2, + A’,), B = h,X,/(3 + A’, 
+ i:), and R2 = 5/(5 + A$ + A’,). Thus for any given non-zero values for p*, 

R2 and B we have A2 = /5p2(1 - R2)/R2, A, = /5(1 - p’)(l - R2)/R2 and 
A, = (B/X,)(3 + A\ + A’,). When p* = 0 (and A, = 6 = B = 0), A, may take on 
any non-zero value and the model is recursive. 

We first choose the values of A,, A, and A, such that p* = 0.5, R* = 0.5 and 
B = 0.2. Thus we have 

y, =y, + z1,1+ 21.2 + 1.012u,, (13) 

and 

y, = zt,t + tI,2 + z2,1 + z~,~ + z2,3 + 1.581~~ + 1.581~~. (14) 

Next we choose the values of the X’s so p2 = 0.5, R2 = 0.5 and B = 2. Thus: 

y, =y, + zt,t + z1,2 + lO.l2OU,, (15) 

and 

y, = z~,~ + z~,~ + z2,t + z2,* + z2,3 + 1.581~~ + 1.581~~. (16) 

The following structural equations for y2 are consistent with the models 
given by (13) and (14) and by (15) and (16) respectively: 

y2 = 0.610~~ - 0.222, 1 - 0.222, 2 

+0.392,,, + 0.392,,, + 0.392,,, + 0.616U2, (17) 

and 

y, = 0.135~~ - 0.73~ - 0.73z,,, 

+ 0.865z,,, + 0.865z,,, + 0.865z2., + 1.367~~. (18) 

For (13) and (17) we have A, = 1.562X,, and for (15) and (18) we have 
A, = 0.156X,. We could never determine these relationships empirically, though, 
because (17) and (18) are underidentified. The variance of the equation 
disturbance term is 100 times as large for eq. (15) as for eq. (13) and the 
asymptotic OLS bias measured as a percentage of the true value of (it is 20% 
for the model given by (13) and (14) and 200% for the model given by (15) and 
(16). However, for both models the power of the Wu-Hausman test of H,*, H, 
or Hb using a critical region of 0.05 is approximately 45% for n = 20, 91% for 
n = 40 and 100% for n = 100. (These results were derived by Monte Carlo 
experiments conducted in the manner described later in this section.) This is 
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because the distribution of the test statistic T2 is the same for both models. It 
should be recalled that the existence and identification of a structural equation 
for y, is not a requirement for application of the Wu-Hausman test as this test 
was originally presented by Wu and by Hausman. 

Of course, even when the structural equation for y, is identified and the 
relationship between X, and Xi can be empirically determined, this relation- 
ship is still model-specific. When the equation for y, is not derived from a 
structural model for y1 and y2, the distribution of T2 may not involve h, at 
all. One such situation might be when the suspected correlation between y2 
and ui in (1) is due to measurement errors in y2. 

We will now turn our attention to the determinants of B, S and p. From (4) 
we see that the magnitude (or absolute value) of B, the parameter restricted 
under H,*, is an increasing function of the magnitudes of h, and p, and a 
decreasing function of the magnitudes of < and of R;,_ z,p, .zz to the extent 
that these parameters can be varied independently.Y From (8) we see that the 
magnitude of 13, the parameter restricted under H,, is an increasing function of 
the magnitudes of X,, 5 and p, but does not depend on R.t2m.Z,B, .z,. Finally 
from (6) we see that p, the parameter restricted under Hb, does not depend 

directly on h,, 5 or Rt2- z,B,. z,. 
Nuisance parameters are parameters that are assumed to be fixed in the 

sense that they take on the same values under both the null and alternative 
hypotheses. If we consider p, A,. E and R,&z,p,. z, ull to be nuisance 
parameters we cannot consider a power function for the Wu-Hausman test 
because we cannot consider ranges of values for p, or for B and S which are 
entirely determined by the nuisance parameters. 

No one is suggesting that p be considered as a nuisance parameter, of 
course. Rather the spirit of most of the literature on the Wu-Hausman test is 

that hi, 5 and R:2-Z,P,.Zz, but not p, are to be treated as nuisance parameters 
(this parameterization has not been used by others). In this case, since B and S 
are linear functions of p, although the power function of the Wu-Hausman 
test will have a different appearance depending on whether we describe it in 
terms of B, S or p, these different representations of the power function will be 
uniquely related for any given model. However, these relationships will depend 
crucially on the values of the nuisance parameters. Also because B depends on 

hi, while p and the rejection rate for the Wu-Hausman test of Hz, H, or H;, 
do not, the power of the Wu-Hausman test of H,* can be low for plausible 
models with large values of B. For such models, the Wu-Hausman test will 
perform poorly as an indicator of the existence of an OLS bias problem. 

This point can be demonstrated by Monte Carlo methods. We use the model 
given by (11) and (12) in these experiments, except that we assume that the z’s 

‘We can vary [ while keeping Rf,, r,P, z2 fixed by varying var*( Z, &). Similarly, R:, z,p, zz 

can be varied while keeping 5 fixed by varying var *( Z,&). 
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as well as the U’S are identically distributed standard normal variables. For 
convenience we assume ui and u2 are independently distributed.” 

In table 1 we show rejection rates for the Wu-Hausman tests of H,* or Hb or 
Ho, where all three of these null hypotheses will be rejected in exactly the same 
cases. The power for the test of Hb: p = 0 can be seen to rise as the values of p2 
rise, with the rate of this rise depending on the value of R2.” From table 1 we 
also see that, when p2 or R2 are low, the power of the test of H,*: B = 0 can be 
quite low for fairly large values of B. 

Suppose now that we do not consider A,, 5 and Rtz_z,B, ,%I to be nuisance 
parameters when testing H,*. These parameters are not explicitly restricted 
under I-I,*, but neither is p. Moreover, p, A,, ( and R2 are all implicitly 
restricted under H,* since B depends on all of them. (Likewise p, A, and 5 are 
implicitly restricted under Ho.) Viewing our results in this way, we see that it is 
possible to increase B without increasing the power of the Wu-Hausman test 
of H,*, as has been done in our experiments (see table 1). One desirable 
property for a statistical test to have is that, for a lixed sample size and size of 
test, the power of the test increases as the departure from the null hypothesis 
increases [see Rao (1973, p. 460)]. When parameters implicitly restricted under 
the null are not considered to be nuisance parameters, the Wu-Hausman test 
of H,* (or Ho) does not possess this property. This problem does not arise for 
the Wu-Hausman test of Hb: p = 0, but this null hypothesis has not been 

considered in the literature on the Wu-Hausman test. 

4. Measuring the extent of a bias problem 

The Wu-Hausman test was proposed as a test for the existence of an OLS 
bias problem. l2 Often, however, the existence of such a problem is known or 

“In dealing with a related class of problems, Sawa (1969, p. 925) notes that ‘without loss of 
generality we can assume the orthonormality of exogenous variables’. The variance and MSE of 
the IV estimator of oi are finite for the model given by (11) and (12), although this is not a 
requirement for application of the Wu-Hausman test. Normal random values for the z’s and U’S 
were generated using the polar method by the subroutine GGNPM in the IMSL library. We 
generated 200 sets of series for the z’s and U’S appearing in (11) and (12) for each combination of 
values for n, R2, p2 and B. In tables 2-4 results are shown for each pair of values of n and R2 
through the first value of p2 for which the power of the test is 1 in table 1. In these experiments we 
are varying Rt, -z,s+ z by varying R2. The parameterization of our Monte Carlo experiments is 
motivated by Sawa s t1969) parameterization of the OLS and 2SLS estimators, and bv our 
decompositions [given in Nakakura and Nakamura (1984a)] of the non-central parameters 8; and 
6, of the doubly non-central F distribution which Kariya and Hodoshima (1980) show is the exact 
distribution of the Wu-Hausman statistic for the model adopted in this paper conditional on the 
values of the OLS estimates of p2 and the variance of the disturbance term. When ui and a2 are 
independently distributed, we have var(X,u, + X,u,) = 1; + A\, 

“By fixing the values of the coellicients of the reduced form equation for )i we also fix the 
relationship between R2 and R:.2_Z,S, z2. Thus we can vary Rf2_Z,P, z2 by varying R2. 

12See Wu (1973,1974) and Hausman (1978). See also Durbin (1954). Other possible uses of the 
test are suggested in these papers as well. 
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Table 1 

Percentage rejection rates (power results) for the Wu-Hausman test of H,*: E = 0, H,,: 6 = 0 or 
Hb: p = 0, using a two-tailed critical region of 0.05.” 

R=. B, P= n = 20 n = 40 

0.2, 0, 0 6.0 5.0 
0.2, 0.2, 0.1 6.5 9.0 
0.2, 0.8, 0.1 6.5 8.5 
0.2, 0.2, 0.3 8.0 19.0 
0.2, 0.8, 0.3 13.0 23.5 
0.2, 0.2, 0.5 13.0 40.5 
0.2, 0.8, 0.5 13.0 35.0 
0.2, 0.2, 0.7 28.5 71.5 
0.2, 0.8, 0.7 26.0 67.0 
0.2, 0.2, 0.9 57.0 94.5 
0.2, 0.8. 0.9 53.5 94.5 

0.5, 0. 0 5.5 5.5 
0.5, 0.2, 0.1 7.5 20.5 
0.5, 0.8. 0.1 8.0 17.5 
0.5, 0.2, 0.3 23.5 57.5 
0.5, 0.8, 0.3 27.5 54.0 
0.5. 0.2, 0.5 45.0 91.5 
0.5, 0.8, 0.5 48.0 86.5 
0.5. 0.2, 0.7 70.5 98.0 
0.5, 0.8, 0.7 69.0 97.0 
0.5, 0.2, 0.9 90.5 100.0 
0.5, 0.8, 0.9 94.5 100.0 

0.8, 0, 0 3.0 4.5 
0.8, 0.2, 0.1 19.0 34.0 
0.8, 0.8, 0.1 16.0 29.5 
0.8, 0.2, 0.3 42.0 81.0 
0.8, 0.8, 0.3 42.0 87.0 
0.8, 0.2, 0.5 67.5 99.5 
0.8, 0.8, 0.5 17.0 99.0 
0.8, 0.2, 0.7 90.5 loo.0 
0.8, 0.8, 0.7 95.0 100.0 
0.8, 0.2, 0.9 98.5 
0.8, 0.8, 0.9 99.0 

n=lOO n = 250 n=500 

5.5 
14.0 
19.5 
51.5 
60.0 
86.5 
86.0 
99.5 
99.0 

100.0 
100.0 

5.5 
45.5 
47.0 
96.5 
99.5 

100.0 
100.0 

5.0 
72.5 
73.0 
99.5 
99.5 

100.0 
100.0 

4.5 4.5 
45.0 74.5 
49.5 12.5 
95.5 100.0 
93.0 100.0 

100.0 
100.0 
100.0 

5.0 4.5 
89.0 99.5 
89.0 99.5 

100.0 100.0 
100.0 100.0 

4.5 
100.0 
100.0 

5.5 
100.0 
100.0 

“The Wu-Hausman test will reject H,, Hz and Hb in exactly the same cases. The number of 
repetitions in each case is 200. The length of the seriesis denoted by n. 
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assumed a priori. l3 In such cases, it is the extent, not the existence, of an OLS 
bias problem that is really in question. l4 In this section we consider the extent 
to which the Wu-Hausman test is able to pick out cases where the sample bias 
(8) is small. For any given model with a given value of B, there is a sampling 
distribution of values for 8. However, if i = 0 (or is nearly zero) for some 

particular data sample, then we have a perfect (or nearly perfect) estimate of 
(pi no matter what the value of B is. It is the bias of the estimate, not the 
estimator, that is of ultimate concern in many empirical studies. The 
Wu-Hausman test (or test statistic)15 could be used to pick out cases where j 
is small if there were high positive correlations between i and T2 for samples 
drawn from populations with any given values of p, A,, 5 and Rt2_Z,P, .z,. 

Standard practice in developing a new test is to investigate the population 
properties of the test, including finite sample population properties. The 
property being considered in this section is a case selection, not a population, 
property. l6 Wu (1973) and Hausman (1978) make no claims concerning the 
case selection properties of their test, but it is of interest to see if the test could 
be used to pick out cases with small values of h for two reasons. First, the 
form of the respective formulas suggests there might be a positive correlation 
between i and T2. Second, a similar case selection property has been estab- 
lished for another specification error test. ” However, the ‘correlations between 
the absolute values of T2 and i in table 2 are all small, and are often negative 
for smaller values of n. 

In table 3 we show the sample means for 5 for given values of n, p2, R* and 
B for the cases where the Wu-Hausman (W-H) test accepts H,* (or H, or Hb) 

i31n fact, bias is implied by the assumed models in many applied settings. See, for example, 
Boulier and Rosenzweig (1984, pp. 719, 727) Eichengreen (1984, pp. 1002, 1005) and Nakamura 
and Nakamura (1984b). 

“Amold Zellner suggested in discussion with us that (b, - b2) might be directly used as a point 
estimator of B = plim(b,) - at, since b, is a consistent estimator of a, in (1) under H,*, Ha and 
H& as well as under Hf, H, and H;. It is only under Hz, H, and Hb, however, that a 
computationally tractable and consistent estimator of var( b, - b2) has been derived [see Durbin 
(1954, p. 29) and Hausman (1978)]. 

“The Wu-Hausman test of H,* (or Ha or Hb) is a consistent test. [See Nakamura and 
Nakamura (1984a) for a proof of the consistency of this test that does not assume local 
misspecification alternatives.] Thus for large samples, H,* will always be rejected when B is 
non-zero no matter how small B may be. 

16Notice that case selection properties arc irrelevant for classical tests. If, for instance, we are 
testing the null hypothesis that at equals some specified value in (1) we only care about what this 
test tells us about the population value of a,.pn the other hand, in the Wu-Hausman test of Hz: 
B = 0, we care about the value of B because B is the distance between the OLS estimate of a, and 
the true value of this parameter. 

“From results presented in Nakamura, Nakamura and Orcutt (1976), it can be seen that when 
the sample autocorrelation coefficient for the error term of a simple regression is close to zero, 
there is no ‘autocorrelation problem’ in terms of the usual testing problems resulting from the 
autocorrelation of the error term, regardless of the population value of the autocorrelation 
coefficient. 
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Table 2 

Simple correlations between the absolute sample values of the Wu-Hausman test statistic and the 
absolute values of B, the deviations of the OLS estimates of a, in (11) from the true value of 

a, ( = l).” 

R=. B. p’ II = 20 n = 40 n = 100 n = 250 n = 500 

0.2, 0, 0 
0.2. 0.2, 0.1 
0.2, 0.8, 0.1 
0.2, 0.2. 0.3 
0.2, 0.8, 0.3 
0.2, 0.2, 0.5 
0.2. 0.8, 0.5 
0.2. 0.2, 0.7 
0.2, 0.8, 0.7 
0.2. 0.2, 0.9 
0.2. 0.8, 0.9 

0.5, 0, 0 
0.5, 0.2, 0.1 
0.5. 0.8, 0.1 
0.5. 0.2, 0.3 
0.5. 0.8, 0.3 
0.5, 0.2, 0.5 
0.5, 0.8, 0.5 
0.5. 0.2, 0.7 
0.5, 0.8. 0.7 
0.5, 0.2, 0.9 
0.5, 0.8, 0.9 

0.8. 0. 0 
0.8. 0.2, 0.1 
0.8. 0.8, 0.1 
0.x. 0.2, 0.3 
0.8. 0.8. 0.3 
0.8, 0.2, 0.5 
0.8, 0.8. 0.5 
0.8, 0.2, 0.7 
0.8, 0.8, 0.7 
0.8, 0.2, 0.9 
0.x. 0.x. 0.9 

- 0.07 - 0.07 
0.04 ~ 0.03 
0.06 0.03 

- 0.05 - 0.06 
0.01 ~ 0.02 

-0.00 ~ 0.03 
-0.15 -0.11 
~ 0.06 ~ 0.14 
~ 0.20 - 0.04 
~ 0.42 -0.18 
~ 0.29 -0.39 

- 0.07 
0.08 

~ 0.04 
0.08 

-0.19 
0.01 

-0.12 
-0.10 
-0.11 
~ 0.22 
- 0.27 

0.09 
- 0.00 

0.02 
0.06 

~ 0.01 
~ 0.03 
- 0.06 
- 0.20 
-0.19 

h - 

-0.10 
~ 0.02 
- 0.01 

0.01 
0.18 
0.00 

- 0.06 
- 0.05 
~ 0.09 
-0.12 
-0.16 

0.03 
-0.12 
~ 0.02 
- 0.00 

0.16 
- 0.08 
- 0.01 

0.05 0.10 0.06 
0.04 ~ 0.01 0.04 
0.05 0.09 0.13 
0.02 ~ 0.01 

~ 0.05 0.02 
0.14 
0.16 

- 0.05 
~ 0.0x 

- 0.05 
0.00 

~ 0.02 
~ 0.01 

0.03 

~ 0.03 
0.01 
0.00 
0.01 

- 0.09 

- 0.01 ~ 0.05 
~ 0.02 0.05 

0.07 0.02 

0.03 0.00 

“See footnote to table 1. 
hResults are only shown through the first pair of values of R* and p’ (for the given value of n) 

for which the power of the test is found to be one in table 1. 

and the cases where H,* (or H, or H-6) is rejected using a two-tailed critical 
region of 0.05. The sample means for B for the cases where H,* is accepted rise 
and fall with the true values of B in the same way as for the cases where H,* is 
rejected. For any given non-zero values of p 2, R2 and B, what we would like to 
have found is 

E( BlW-H tests accepts H,*) = 0, 
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Table 3 

Mean sample biases for OLS estimator of al in (11) for cases where H,*: B = 0 was accepted and 
cases where Hz: B = 0 was rejected.” 

H,* : B = 0 accepted H,* : B = 0 rejected 

R=, B, p= n = 20 n = 40 n = 100 n = 250 n = 500 n = 20 n = 40 n = 100 n = 250 n = 500 

0.2, 0, 0 -0.00 -0.00 0.00 0.00 0.00 0.02 -0.01 -0.00 
0.2, 0.19 0.20 0.20 0.25 0.17 

0.2, 0.8, 0.1 0.85 0.84 0.80 0.78 0.79 0.67 0.76 0.82 
0.2, 0.2, 0.21 0.20 0.20 0.19 0.20 

0.8, 0.82 0.80 0.76 0.81 0.80 
0.2, 0.20 0.20 0.20 0.20 

0.2, 0.82 0.77 0.73 0.79 
0.2, 0.19 0.21 0.19 0.20 
0.2, 0.80 0.80 0.76 0.80 
0.2, 0.21 0.19 0.20 

0.8, 0.83 0.78 0.79 

0, 0 -0.00 -0.00 0.00 0.00 0.01 -0.00 
0.5, 0.2, 0.19 0.21 0.20 0.21 0.21 
0.5, 0.8, 0.1 0.81 0.78 0.83 0.74 1.14 0.55 0.71 0.85 
0.5, 0.2, 0.19 0.21 0.24 0.20 
0.5, 0.83 0.83 0.68 0.82 
0.5, 0.20 0.20 0.20 

0.8, 0.83 0.77 0.78 
0.2, 0.20 0.20 0.19 
0.8, 0.83 0.80 0.78 
0.2, 0.23 

0.5, 0.8, 0.9 0.95 0.79 

0.8, - 0.00 0.01 -0.00 0.00 
0.8, 0.2, 0.1 0.23 0.20 0.22 0.13 0.17 0.21 
0.8, 0.8, 0.80 0.77 1.19 0.83 
0.8, 0.20 0.27 0.18 0.20 
0.8, 0.80 0.96 0.76 0.81 
0.8, 0.18 0.19 0.20 

0.8, 0.79 0.82 0.80 
0.2, 0.20 

0.8, 0.8, 0.7 1.06 0.81 
0.8, 0.2, 0.23 
0.8, 0.8, 0.9 1.13 0.78 

0.00 
0.19 0.20 

0.83 
0.20 

0.00 0.00 
0.19 

0.80 

0.00 -0.00 

E( PlW-H test accepts H,*) -c E( hlW-H test rejects Hz). (20) 

But what we have found instead is 

E( h!W-H test accepts H,*) = E( &lW-H test rejects H,*) = E(i). 

(21) 

“See footnote a to table 1 and footnote b to table 2. 

or, at least, 
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The results in tables 2 and 3 show that neither the Wu-Hausman test nor T2 
can be used to pick out estimated models where h is close to zero. 

5. Use of the Wu-Hausman test as a pretest 

One reason for concern about OLS bias is that it leads to Type I errors that 
are larger than the stated size for the usual test of significance for the 
coefficient of the included endogenous variable. In. this section we consider 
whether this testing problem can be alleviated by basing the test of significance 
for the coefficient of the included endogenous variable on the OLS estimation 
results when H,* (or H, or Hb) is accepted by the Wu-Hausman test and on 
the IV estimation results otherwise.” 

We use the term MIXED to indicate that OLS or IV estimation is used, 
respectively, depending on whether the Wu-Hausman test with a two-tailed 
five-percent critical region accepts or rejects Hz. In table 4 we compare the 
observed proportions (or probabilities) of Type I errors for the OLS, IV and 
MIXED method t-tests of H;: CY~ = 1 versus HF: (pi # 1 using a two-tailed 
five-percent critical region, where one is the true value of (pi. For non-zero 
values of p, as n increases the probability of a Type I error tends toward 
hundred percent for OLS and toward the specified level of five percent for IV. 
The probabilities of a Type I error reported in table 4 for the MIXED method 
are always smaller than for OLS, but are still large. The advantage of IV over 
the MIXED method in this respect is large even for values of p quite close to 
zero, until n becomes large enough that IV is used virtually all the time in the 
MIXED method. For instance, when n = 100, R* = 0.2, and p2 = 0.1 (hence 
p = 0.316), the probabilities of a Type I error are 5 percent for IV, 87.5 percent 
for OLS, and 74.5 percent for the MIXED method. 
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